数据结构
排序算法综合实验报告
姓 名: xx x x
班 级: 10电信1
学 号: xxx
指导老师: 胡圣荣
日期: 2012.12.15~2013.1.5
华南农业大学工程学院
算法基本思想:
1、插入排序:每次将一个待排序的记录,按其关键字大小插入到前面已经排序好的序列中的适当位置,直到全部记录插入完毕为止。
(1)直接插入排序:在排序过程中,每次都讲无序区中第一条记录插入到有序区中适当位置,使其仍保持有序。初始时,取第一条记录为有序区,其他记录为无序区。显然,随着排序过程的进行,有序区不断扩大,无序区不断缩小。最终无序区变为空,有序区中包含了所有的记录,排序结束。
(2)希尔排序:将排序表分成若干组,所有相隔为某个“增量”的记录为一组,在各组进行直接插入排序;初始时增量d1较大,分组较多(每组的记录数少),以后增量逐渐减少,分组减少(每组的记录数增多),直到最后增量为1(d1>d2>...>dt=1),所有记录放为一组,再整体进行一次直接插入排序。
2、交换排序:每次比较两个待排序的记录,如果发现他们关键字的次序与排序要求相反时就交换两者的位置,直到没有反序的记录为止。
(1)冒泡排序:设想排序表R[1]到R[n]垂直放置,将每个记录R[i]看作是重量为R[i].key的气泡;根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡违反本原则的轻气泡,就使其向上“漂浮”,如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。
(2)快速排序:在待排序的n个记录中任取一个作为“基准”,将其与记录分为两组,第一组中个记录的键值均小于或等于基准的键值,第二组中个记录的键值均大于或等于基准的键值,而基准就排在这两组中间(这也是该记录的最终位置),这称为一趟快速排序(或一次划分)。对所分成的两组重复上述方法,直到所有记录都排在适当位置为止。
3、选择排序:每次从待排序的记录中选出关键字最小(或最大)的记录,顺序放在已排好序的子序列的后面(或最前),直到全部记录排序完毕。
(1)直接选择排序:首先,所有记录组成初始无序区R[1]到R[n],从中选出键值最小的记录,与无序区第一个记录R[1]交换;新的无序区为R[2]到R[n],从中再选出键值最小的记录,与无序区第一个记录R[2]交换;类似,第i趟排序时R[1]到R[i-1]是有序区,无序区为R[i]到R[n],从中选出键值最小的记录,将它与无序区第一个记录R[i]交换,R[1]到R[i]变为新的有序区。因为每趟排序都使有序区中增加一个记录,所以,进行n-1趟排序后,整个排序表就全部有序了。
(2)堆排序:利用小根堆(或大根堆)来选取当前无序区中关键字最小(或最大)的记录来实现排序的。下面介绍利用大根堆来排序。首先,将初始无序区调整为一个大根堆,输出关键字最大的堆顶记录后,将剩下的n-1个记录在重建为堆,于是便得到次小值。如此反复执行,知道全部元素输出完,从而得到一个有序序列。
4、并归排序:指将若干个已排序的子表合成一个有序表。
(1)二路并归排序:开始时,将排序表R[1]到R[n]看成n个长度为1的有序子表,把这些子表两两并归,便得到n/2个有序的子表(当n为奇数时,并归后仍是有一个长度为1的子表);然后,再把这n/2个有序的子表两两并归,如此反复,直到最后得到一个程度为n的有序表为止。
各种排序实验结果:
CPU
(英特尔)Intel(R) Core(TM) i5 CPU M 480 2.67GHz
xx
存
4.00 GB (金士顿 PC3-10600 DDR3 1333MHz)
学号
xxxxxxxxxx
主板
宏碁 JE40_CP
班级
10电信1班
操作系统
Microsoft Windows 7 旗舰版 (64位/Service Pack 1)
xxxxxxxxxxxxx
编译软件
Visual C++ 6.0
609803959qq.
10^4
2*10^4
10^5
2*10^5
10^6
2*10^6
10^7
2*10^7
10^8
10^5
正序
逆序
直接插入
(带监视哨)
C
24.874
100.158
2500.3
9995.6
0.099999
5000.05
t(时间)
0.156
0.546
13.391
53.417
>5min
0
27.486
直接插入
(无监视哨)
C
24.874
100.158
2500.3
9995.6
0.099999
4999.95
t
0.156
0.578
14.21
56.715
>5min
0
29.137
希尔排序
(无监视哨)
C
0.261664
0.598651
4.29106
9.60946
70.5165
166.929
1084.56
2461.37
17159.6
1.50001
2.24458
t
0.015
0.016
0.047
0.109
0.717
1.591
11.544
27.735
208.722
0.02
0.02
直接选择
C
0
0
0
0
0
0
t
0.218
0.78
19.367
77.32
>5min
19.751
20.249
冒泡(上升)
C
49.9905
199.985
4999.94
19999.9
0.099999
4999.95
t
0.452
1.825
45.542
182.678
>5min
0
47.326
冒泡(下沉)
C
49.9904
199.96
4999.78
19999.9
0.099999
4999.95
t
0.483
1.902
47.239
189.081
>5min
0
47.503
快速(递归)
C
0.170775
0.361618
2.17042
4.79646
25.8125
57.6668
320.86
647.454
3493.6
2201.3
2201.4
t
0.01
0.01
0.031
0.062
0.219
0.484
2.577
5.297
29.377
18.026
18.195
堆排序
(非递归)
C
0.235479
0.510793
3.01938
6.43895
36.7932
77.5876
434.639
909.281
5012.88
3.11252
2.92664
t
0.016
0.016
0.047
0.094
0.499
0.968
7.223
17.093
123.429
0.04
0.05
堆排序
(递归)
C
0.235479
0.510793
3.01938
6.43895
36.7932
77.5876
434.639
909.281
5012.88
3.11252
2.92664
t
0
0.015
0.078
0.125
0.903
1.825
13.659
31.742
235.346
0.06
0.07
二路归并
(非递归)
C
0.123676
0.267361
1.56651
3.33305
18.7166
39.4319
224.002
468.006
2540.15
0.877986
0.815024
t
0
0.015
0.046
0.062
0.25
0.546
3.017
6.457
35.309
0.03
0.03
实验结果原因分析和结论:
1. 插入、冒泡排序的速度较慢,但参加排序的序列局部或整体有序时,这种排序能达到较快的速度。反而在这种情况下,快速排序反而慢了。
当n较小时,对稳定性不作要求时宜用选择排序,对稳定性有要求时宜用插入或冒泡排序。
若待排序的记录的关键字在一个明显有限围时,且空间允许是用桶排序。
当n较大时,关键字元素比较随机,对稳定性没要求宜用快速排序。
当n较大时,关键字元素可能出现本身是有序的,对稳定性有要求时,空间允许的情况下。宜用归并排序。
当n较大时,关键字元素可能出现本身是有序的,对稳定性没有要求时宜用堆排序。
2.插入排序、冒泡排序、选择排序的时间复杂性为O(n2)
?其它非线形排序的时间复杂性为O(nlog2n)
?线形排序的时间复杂性为O(n);
3.在算法运行期间,运行QQ软件、360安全卫士、360杀毒、word文档、ppt、酷狗等软件会影响绝对时间和逻辑时间,使时间增大
4.随着n的取值增大,算法的实际时间增长速度逐渐增大。
5.直接插入排序(有、无监视哨)、冒泡排序(上升、下沉)、堆排序(递归、非递归)的关键字比较次数相同,但绝对时间相差比较大;直接选择排序与冒泡排序的关键字比较次数相近。
6.相比较其他同学的数据,直接插入(有、无监视哨),直接选择,冒泡(上升、下沉)的结果相差较小,希尔选择结果相差很大,另快速(递归),堆(递归,非递归),二路归并(非递归)结果并不会受计算机环境而不同。
附录:源程序极其代码
#define CPP C++
#define MPP M++
#define MP2 M+=2
#define MP3 M+=3
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
const int maxsize=20000; //排序表容量
typedef int datatype;
typedef struct {
datatype key; //关键字域
// othertype other; //其它域
} rectype; //记录类型
typedef rectype list[maxsize+2]; //排序表类型,0号单元不用
__int64 C,M; //比较和移动次数
void check(list R,int n) { //检验排序结果
int i;
for(i=2;i<=n;i++)
if(R[i].key<R[i-1].key) {cout<<"Error!\n";return;}
cout<<"Correct! ";
}
void disp(list R,int n) { //显示排序后的结果
int i;
for(i=1;i<=n;i++) {
cout<<setw(4)<<R[i].key<<" ";
// if(i%20==0) cout<<endl;
}
cout<<endl;
}
void InsertSort1(list R,int n) {//直接插入排序,带监视哨(并不改变关键字次数)
int i,j;
for(i=2;i<=n;i++) { //依次插入R[2],R[3],…,R[n]
if(CPP,R[i].key>=R[i-1].key) continue;
//R[i]大于有序区最后一个记录,则本趟不需插入
MPP,R[0]=R[i]; //R[0]是监视哨
j=i-1;
do { //查找R[i]的插入位置
MPP,R[j+1]=R[j];j--; //记录后移,继续向前搜索
} while(CPP,R[0].key<R[j].key);
MPP,R[j+1]=R[0]; //插入R[i]
}
}
void InsertSort2(list R,int n) {//直接插入排序,无监视哨
int i,j;rectype x; //x为辅助量(用R[0]代替时间变长)
for(i=2;i<=n;i++) { //进行n-1次插入
if(CPP,R[i].key>=R[i-1].key) continue;
MPP,x=R[i]; //待排记录暂存到x
j=i-1;
do { //顺序比较和移动
MPP,R[j+1]=R[j];j--;
} while(j>=1 && (CPP,x.key<R[j].key));
MPP,R[j+1]=x; //插入R[i]
}
}
void ShellSort1(list R,int n){//一趟插入排序,h为本趟增量
int h,i,j,k;
for(h=n/2;h>=1;h=h/2){
for(i=1;i<=h;i++){ //i为组号
for(j=i+h;j<=n;j+=h){ //每组从第2个记录开始插入
if(CPP,R[j].key>=R[j-h].key) continue;//R[j]大于有序区最后一个记录,
//则不需要插入
MPP,R[0]=R[j]; //R[0]保存待插入记录,但不是监视哨
k=j-h; //待插记录的前一个记录
do{ //查找正确的插入位置
MPP,R[k+h]=R[k];k=k-h;//后移记录,继续向前搜索
}while(k>0&&(CPP,R[0].key<R[k].key));
MPP,R[k+h]=R[0]; //插入R[j]
}
}
if(h==1) break;
}
}
void SelectSort1(list R,int n){
int i,j,k;
for(i=1;i<=n-1;i++){//n-1趟排序
k=i;
for(j=i+1;j<=n;j++)//在当前无序区从前向后找键值最小的记录R[k]
if(R[j].key<R[k].key) k=j;
if(k!=i){R[0]=R[i];R[i]=R[k];R[k]=R[0];}//交换R[i]和R[0],R[0]作辅助量
}
}
void BubbleSort1(list R,int n) {//上升法冒泡排序
int i,j,flag;rectype x; //x为辅助量(可用R[0]代替)
for(i=1;i<=n-1;i++) { //做n-1趟扫描
flag=0; //置未交换标志
for(j=n;j>=i+1;j--) //从下向上扫描
if(CPP,R[j].key<R[j-1].key) { //交换记录
flag=1;
MP3,x=R[j];R[j]=R[j-1];R[j-1]=x;//交换
}
if(!flag) break; //本趟未交换过记录,排序结束
}
}
void BubbleSort2(list R,int n) {//下沉法,冒泡排序
int i,j,flag;rectype x; //x为辅助量(可用R[0]代替)
for(i=1;i<=n-1;i++) { //做n-1趟扫描
flag=0; //置未交换标志
for(j=1;j<=n-i;j++) //从上向下扫描
if(CPP,R[j].key>R[j+1].key) {//交换记录
flag=1;
MP3,x=R[j];R[j]=R[j+1];R[j+1]=x;//交换
}
if(!flag) break; //本趟未交换过记录,排序结束
}
}
int Partition(list R,int p,int q) {//对R[p]到R[q]划分,返回基准位置
int i,j;rectype x; //辅助量(可用R[0]代替)
i=p;j=q;MPP,x=R[p]; //x存基准(无序区第一个记录)
do {
while((CPP,R[j].key>=x.key) && i<j) j--;//从右向左扫描(取消=变快)
if(i<j) {MPP,R[i]=R[j];i++;} //交换R[i]和R[j]
while((CPP,R[i].key<=x.key) && i<j) i++;//从左向右扫描
if(i<j) {MPP,R[j]=R[i];j--;} //交换R[i]和R[j]
} while(i<j);
MPP,R[i]=x; //基准移到最终位置
return i; //最后i=j
}
void QuickSort1(list R,int s,int t) {//对R[s]到R[t]快速排序,递归算法m
int i;
if(s>=t) return; //只有一个记录或无记录时无需排序
i=Partition(R,s,t); //对R[s]到R[t]做划分
QuickSort1(R,s,i-1); //递归处理左区间
QuickSort1(R,i+1,t); //递归处理右区间
}
void Sift1(list R,int p,int q){ //堆围为R[p]~R[q],调整R[p]为堆,非递归算法
int j;
MPP,R[0]=R[p]; //R[0]作辅助量
j=2*p; //j指向R[p]的左孩子
while(j<=q){
if(j<q && (CPP,R[j].key<R[j+1].key)) j++; //j指向R[p]的右孩子
if(CPP,R[0].key>=R[j].key) break; //根结点键值大于孩子结点,已经是堆,调整结束
MPP,R[p]=R[j]; //将R[j]换到双亲位置上
p=j; //修改当前被调整结点
j=2*p; //j指向R[p]的左孩子
}
MPP,R[p]=R[0]; //原根结点放入正确位置
}
void Sift2(list R,int p,int q){ //堆围为R[p]~R[q],调整R[p]为堆,递归算法
int j;
if(p>=q) return; //只有一个元素或无元素
j=2*p;
if(j>q) return;
if(j<q && (CPP,R[j].key<R[j+1].key)) j++; //j指向R[p]的右孩子
if(CPP,R[p].key>=R[j].key) return; //根结点关键字已最大
MPP,R[0]=R[j]; //交换R[j]和R[p],R[0]作辅助量
MPP,R[j]=R[p];
MPP,R[p]=R[0];
Sift2(R,j,q); //递归
}
void HeadSort1(list R,int n){ //堆R[1]到R[n]进行堆排序
int i;
for(i=n/2;i>=1;i--) Sift1(R,i,n); //建初始堆
for(i=n;i>=2;i--){ //进行n-1趟堆排序
MPP,R[0]=R[1]; //堆顶和当前堆底交换,R[0]作辅助量
MPP,R[1]=R[i];
MPP,R[i]=R[0];
Sift1(R,1,i-1); //R[1]到R[i-1]重建成新堆
}
}
void HeadSort2(list R,int n){ //堆R[1]到R[n]进行堆排序
int i;
for(i=n/2;i>=1;i--) Sift2(R,i,n); //建初始堆
for(i=n;i>=2;i--){ //进行n-1趟堆排序
MPP,R[0]=R[1]; //堆顶和当前堆底交换,R[0]作辅助量
MPP,R[1]=R[i];
MPP,R[i]=R[0];
Sift2(R,1,i-1); //R[1]到R[i-1]重建成新堆
}
}
void Merge(list R,list R1,int low,int mid,int high) {
//合并R的两个子表:R[low]~R[mid]、R[mid+1]~R[high],结果在R1中
int i,j,k;
i=low;
j=mid+1;
k=low;
while(i<=mid && j<=high)
if(CPP,R[i].key<=R[j].key) MPP,R1[k++]=R[i++]; //取小者复制
else MPP,R1[k++]=R[j++];
while(i<=mid) MPP,R1[k++]=R[i++]; //复制左子表的剩余记录
while(j<=high) MPP,R1[k++]=R[j++]; //复制右子表的剩余记录
}
void MergePass(list R,list R1,int n,int len) {//对R做一趟归并,结果在R1中
int i,j;
i=1; //i指向第一对子表的起始点
while(i+2*len-1<=n) { //归并长度为len的两个子表
Merge(R,R1,i,i+len-1,i+2*len-1);
i=i+2*len; //i指向下一对子表起始点
}
if(i+len-1<n) //剩下两个子表,其中一个长度小于len
Merge(R,R1,i,i+len-1,n);
else //子表个数为奇数,剩一段
for(j=i;j<=n;j++) //将最后一个子表复制到R1中
MPP,R1[j]=R[j];
}
void MergeSort(list R,list R1,int n) {//对R二路归并排序,结果在R中(非递归算法)
int len;
len=1;
while(len<n) {
MergePass(R,R1,n,len);len=len*2; //一趟归并,结果在R1中
MergePass(R1,R,n,len);len=len*2; //再次归并,结果在R中
}
}
int random1(int num) {return rand();} //0~RAND_MAX=32767
int random3(int num) {//素数模乘同余法,0~M
int A=16807; // 16807764261123,630360016 48271?
int M=2147483647; //有符号4字节最大素数,2^31-1
int Q=M/A;
int R=M%A;
static int x=1,n=0,g=0; //seed(set to 1)
static double r,r1=0,r2=0;
int x1;
x1=A*(x%Q)-R*(x/Q);
if(x1>=0) x=x1;
else x=x1+M;
r=1.*x/M;if(r>0.5) g++;
n++;r1+=r;r2+=r*r;
if(n%maxsize==0) {
cout<<"x="<<r<<" "<<g<<" "<<"n="<<n<<" "<<r1/n<<" "<<r2/n<<" "<<(r2-r1)/n+.25<<endl;
}
return x;
}
void main() {
rectype *R,*R1,*S; //R1用于归并排序的辅助存储,S用于保存初始排序数据
R=new list;if(R==NULL) {cout<<"数组太大!\n";exit(-1);}
R1=new list;if(R1==NULL) {cout<<"数组太大!\n";exit(-1);}
S=new list;if(S==NULL) {cout<<"数组太大!\n";exit(-1);}
int i,n=maxsize;
int choice;
clock_t t1,t2;
// float s,t;
// 正序序列
// for(i=1;i<=n;i++)
// S[i].key=i;
//反序序列
// for(i=1;i<=n;i++)
// S[i].key=n-i+1;
// srand( (unsigned)time( NULL ) );
for(i=1;i<=n;i++)
S[i].key=random3(n); //生成0-n之间的随机数
do {
C=M=0;
for(i=1;i<=n;i++)
R[i].key=S[i].key; //取出初始数据用于排序
cout<<"选择排序方法(0: 退出): \n\
11:直接插入(带监视哨) 12:直接插入(无监视哨) \n\
21:希尔排序(无监视哨) \n\
31:直接选择 \n\
41:冒泡(上升) 42:冒泡(下沉) \n\
51:快速(递归) \n\
61:堆排序(非递归) 62:堆排序(递归) \n\
71:二路归并(非递归) \n";
cin>>choice;
switch(choice) {
case 11:
t1=clock();
InsertSort1(R,n);
t2=clock();
break;
case 12:
t1=clock();
InsertSort2(R,n);
t2=clock();
break;
case 21:
t1=clock();
ShellSort1(R,n);
t2=clock();
break;
case 31:
t1=clock();
SelectSort1(R,n);
t2=clock();
break;
case 41:
t1=clock();
BubbleSort1(R,n);
t2=clock();
break;
case 42:
t1=clock();
BubbleSort2(R,n);
t2=clock();
break;
case 51:
t1=clock();
QuickSort1(R,1,n);
t2=clock();
break;
case 61:
t1=clock();
HeadSort1(R,n);
t2=clock();
break;
case 62:
t1=clock();
HeadSort2(R,n);
t2=clock();
break;
case 71:
t1=clock();
MergeSort(R,R1,n);
t2=clock();
break;
default:;
}
check(R,n);
//disp(R,n);
cout<<" C="<<C/1e6<<" M="<<M/1e6<<" C+M="<<(C+M)/1e6;
cout<<" 时间:"<<float(t2-t1)/CLK_TCK<<endl;
} while(choice!=0);
delete R;delete S;
// delete R1;
}
相关热词搜索: 排序 实验 材料 报告 综合