当前位置: 首页 > 范文大全 > 公文范文 >

硒化物—期待开发的含硒表观靶向抗癌药物

时间:2022-10-23 15:25:03 来源:网友投稿

摘 要 硒对表观遗传修饰异常会产生干预影响,阻遏肿瘤的发生和转移。硒化物是肿瘤特异性表观标志物抑制剂,是期待开发的新型含硒表观靶向抗癌药物。

关键词 硒 表观遗传修饰 表观标志物抑制剂 抗癌药 开发

中图分类号:R979.1 文献标识码:A 文章编号:1006-1533(2017)03-0075-04

Selenium compounds — looking forward to be developed as epigenetic targeting selenium-containing anti-tumor drugs*

ZHU Huiqiu1**, HUA Yan1, WANG Mingli2***

(1. Anhui Huaxin Pharmaceutical Co. Ltd., Hefei 230000, China; 2. Anhui Medical University, HeFei 230032, China)

ABSTRACT Selenium compounds can produce an intervention effect on the abnormality of epigenetic modification and then repress the occurrence and metastasis of tumor. They can be used as the inhibitors of some tumor specific epigenetic markers and expected to be developed as a new type of epigenetic targeting selenium-containing anti-tumor drugs.

KEy WORDS selenium; epigenetic modification; inhibitors of epigenetic markers; anti-cancer drugs; development

硒最重要的生物学功能是抗癌,并以多种机制发挥其抗癌作用。近年来的研究发现,硒又可对表观遗传学调控机制异化产生干预影响,特别是对在肿瘤发生机制中的特异性靶点进行干预,进而阻抑肿瘤的发生及转移。硒化物是某些肿瘤特异性表观标志物有效的抑制剂。硒的这个功能不仅对临床肿瘤诊断、治疗、预防具有现实意义,更为“含硒表观靶向抗癌药物”开发提供了科学依据。“含硒表观靶向抗癌药物”是期待开发的新型抗癌药。现就近些年在这些方面的相关研究作一简要介绍。

1 表观遗传学

什么是表观遗传学?从孟德尔遗传规律讲,亲代(一代)把遗传信息传递给子代(二代),主要由携带遗传信息的脱氧核糖核酸(DNA)分子中碱基的排列顺序(即碱基序列)来决定,并在细胞核内遗传。但人们在研究中发现,在DNA碱基序列以外还有一套调控机制,包括 DNA甲基化、组蛋白修饰、染色质重塑以及非编码RNA等,它们在不涉及改变DNA碱基序列的情况下,影响转录活性并调控基因的表达,改变机体的性状,并且是一种可以被干预和逆转的遗传机制。这种非孟德尔遗传现象,称作表观遗传学[1-2]。

2 硒对表观遗传修饰异常产生干预及逆轉作用

肿瘤发生发展的主要生物学原因是原癌基因活化和抑癌基因失活[3]。研究显示,DNA甲基化水平同这些基因的表达密切相关。通常情况下,甲基化水平同基因表达呈负相关,甲基化程度越高,基因表达活性越低,甲基化程度越低,基因表达越活跃[4]。

DNA甲基化主要表现为基因组整体甲基化水平降低和局部CpG岛[在哺乳动物中富含胞嘧啶-磷酸-鸟嘌呤(CpG)二核苷酸的一段DNA称为CpG岛]甲基化程度的异常升高,人类基因组的甲基化主要发生在CpG岛[5]。

研究表明,实体瘤普遍存在基因组广泛低甲基化现象,低甲基化使原癌基因活化,癌细胞异常增殖;低甲基化还使肿瘤转移增加,例如胃癌的甲基化水平越低,癌细胞浸润、转移的倾向越明显[6]。

CpG岛的甲基化程度异常升高,会导致某些抑癌基因表达沉默,进而参与肿瘤的发生发展。在正常情况下,CpG岛为非甲基化。当肿瘤抑癌基因的启动子区域(CpG岛)过度甲基化,就会使抑癌基因的表达沉默。其间DNA甲基转移酶(DNMT)家族中的DNMT1发挥着重要的调控作用,它的高表达导致抑癌基因在CpG岛失活。所以,CpG岛高甲基化成了多种肿瘤特异性表观标志物,已成为临床多种肿瘤早期诊断的依据和指标[7]。

近年来,作为表观遗传学调控机制之一的组蛋白修饰在肿瘤研究领域受到越来越多的关注。组蛋白乙酰化由组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDACs)共同调控,而编码HAT或HDAC的基因如果发生染色体易位、扩增等突变会导致某些肿瘤的发生。

可见,DNA甲基化和组蛋白乙酰化等表观遗传修饰异常是肿瘤发生的另外一个机制。而近年研究发现,硒通过靶向干预可逆转甲基化和乙酰化异常的过程,从而抑制肿瘤的发生及转移。硒化物成了潜在的治癌新药物,是亟待开发、临床应用前景可观的“含硒表观靶向抗癌药物”。

2.1 硒对DNA甲基化产生干预作用

研究表明,膳食硒通过干预表观遗传过程显示出其抗癌潜力,膳食缺硒时组织呈现整体低甲基化[8]。Davis等[9]早些时候研究发现,给大鼠喂食缺硒膳食,其肝脏和结肠都出现显著DNA低甲基化,而经硒处理的人结肠癌细胞株Caco-2 DNA甲基化水平显著高于未经硒处理的对照组,据此研究者认为,膳食缺硒会增加肝脏和结肠肿瘤的发生。Remely等[8]研究表明,膳食硒营养缺乏会引起动物组织和人体结肠癌DNA低甲基化。我国学者徐世文等[4]通过实验也发现,饲料硒缺乏可导致鸡肌肉组织 DNA甲基化水平降低。硒对DNMT有抑制作用,缺硒会导致DNMT活性增加,使原癌基因活化,引起结肠癌等多种肿瘤发生。保持硒等营养素均衡摄入,有利于维持DNA甲基化正常水平及抑制DNMT活性[6]。

CpG岛DNMT1的高表达是使抑癌基因失活的重要机制。抑制DNMT1靶酶活性,使失活的抑癌基因复活,是肿瘤治疗中探索的新途径。硒在多种肿瘤中有去甲基化的生物学功能,能诱导失活的抑癌基因重新活化和表达[3]。研究发现,硒可以直接干预DNA甲基化,抑制腺癌细胞株DNMT的高表达[8]。膳食硒干预DNA甲基化的方式之一是通过去甲基化过程来调节DNMT1活性的;研究还证实,亚硒酸钠和苯甲基氰酸硒(BSC)、1,4-苯双(亚甲基)氰酸硒(p-XSC)两种合成硒化物对人大肠癌细胞核提取物中DNMT的活性都有抑制作用[10]。

各方面的研究验证,硒对DNA甲基化产生干预影响,是靶酶DNMT有效的抑制剂。

2.2 硒干预影响组蛋白的乙酰化

近年来,国内外学者研究发现,组蛋白去乙酰化酶与肿瘤的发生密切相关。HDACs家族中的HDAC1高表达可明显增加肿瘤细胞的增殖能力。在食管鳞癌、前列腺癌等多种肿瘤中均发现HDAC的高表达,靶酶HDAC已成为首选的攻击靶点。

目前,人们通过体内、体外的研究鉴定出了硒、丁酸盐、曲古抑菌素A(TSA)等一些HDAC的抑制剂,这些抑制剂可在体外诱导多种肿瘤细胞的生长停滞、分化或凋亡[2]。Somech等[11]通过临床试验表明,HDAC抑制剂对人体白血病及实体瘤进行治疗,表现出明显的抗肿瘤增殖效果,研究者认为,各类HDAC抑制剂是另一类新型抗癌药物、“癌症治疗的新工具”。

Xiang等[12]的研究证明,硒可以通过下调DNMT和抑制HDAC活性,活化人前列腺癌LNCaP细胞系中因高甲基化沉默的基因GSTP1, APC和CSR1。这些基因是具有保护免受氧化损伤的抗癌活性物质、化学致癌物解毒剂或肿瘤抑制剂。

甲基硒酸(MSA)是近年来新研制成的一种人工低分子量有机硒化合物,是很具潜力的抗癌制剂。Kassam等[13]通过对弥漫性大B细胞淋巴瘤细胞系(DLBCL)體外研究首次发现,MSA可以抑制该细胞系HDAC的活性。研究者认为,有关MSA抑制HDAC活性的作用以前从未报道过,从而为人们提供了硒元素一种新的机制,MSA是日后临床试验中可以使用的硒化物。

我国科研人员胡琛霏[2]通过蛋白质免疫印迹的方法,检测到MSA可抑制食管鳞癌细胞系HDAC的活性,降低HDACl和HDAC2的蛋白表达,引起细胞内组蛋白乙酰化水平显著升高;同时,还检测到硒甲硫氨酸(SLM)对食管鳞癌细胞系KYSEl50细胞和MCF7细胞的作用,在SLM处理细胞24 h后,细胞中组蛋白去乙酰化酶的活性也显著降低。

这些年,越来越多的含硒组蛋白去乙酰化酶抑制剂被发现和验证。亚硒酸钠、酮–甲基硒丁酸盐(KMSB)、甲基硒代半胱氨酸(MSC)、甲基硒丙酮酸(MSP)等硒化物都可以抑制HDAC活性,提高组蛋白乙酰化水平,作为潜在的HDAC抑制剂,发挥其抗肿瘤的作用[14]。Fernandes 等[15]介绍,KMSB 和 MSP在体外作为HDAC的竞争性抑制剂发挥抗癌作用;还报道,合成的SAHA含硒类似物(5-苯甲酰戊氰硒)二硒醚和5-苯甲酰戊氰硒对不同肺癌细胞株HDAC抑制效果比SAHA更好。SAHA是氧肟酸类HDAC抑制剂,是目前在临床上以皮肤T淋巴细胞瘤(CTCL)为适应症而广泛应用的表观靶向抗癌药物。这也提示,含硒类抑制剂对靶酶HDAC抑制效果优于无硒类抑制剂。

为何上述各种硒化物都可靶向抑制DNMT和HDAC活性,研究发现不管其结构如何改变,硒都是这些化合物生物活性的中心元素,发挥着关键作用,硒的这一生物学功能对含硒抗癌药物的开发具有重要的指导意义[16]。

2.3 硒对非编码RNA调控机制产生干预效应

表观遗传学的一个重要调控机制是非编码RNA。非编码RNA是指不能翻译为蛋白质的RNA分子。近年来,非编码RNA一族中的微小RNA-200(miR-200)受到人们的高度关注。研究发现,miR-200家族中的成员微小RNA-200a(miR-200a)与肿瘤的发生发展关系密切,miR-200a在肿瘤组织中呈现明显低表达。因此,miR-200a的表达下调是肿瘤发生的重要因素之一,miR-200a也成了肿瘤特异性表观标志物[17]。

胡琛霏[2]通过TaqMan芯片,检测了MSA处理食管鳞癌细胞后细胞中微小RNA(miRNA)的变化情况,发现MSA可以上调细胞中miR-200a 的表达水平,miR-200a 表达升高后,负性调控Kelch样环氧氯丙烷相关蛋白-1(Keap1)的表达,使Keap1蛋白水平下降,上调转录因子NF-E2相关因子2(Nrf2)蛋白水平并提高其转录活性(Nrf2活性受其细胞质接头蛋白Keap1的调控),从而活化Keap1-Nrf2信号通路。而Keap1-Nrf2信号通路在抗氧化、预防肿瘤发生等诸多方面有重要作用[18]。

体外研究显示[19] ,人脑膜瘤组织中miR-200a表达明显低于正常组织,β-循环蛋白(β-catenin)和其下游靶基因细胞周期蛋白D1表达显著增高,二者和miR-200a呈现负相关,上调miR-200a可降低β-catenin的表达,进而阻断Wnt/β-catenin信号传导通路来抑制脑膜瘤的生长。胡琛霏课题组前期研究也发现MSA可以抑制食管鳞癌细胞系中β-catenin的表达[2] 。研究已证实,Wnt/β-catenin信号通路的激活和高表达可促进肿瘤细胞的增殖、侵袭、转移及抑制肿瘤细胞的凋亡[20]。

由此可见,MSA可能介导、调控着miR-200a表达及参与复杂的分子调控网络,从而抑制肿瘤发生及转移。

3 展望

加强硒与表观遗传学之间关联的研究,有着重要的生物医学意义。它有可能解释硒化学抗肿瘤的新机制,从理论上证明硒元素可能具有表观遗传学的效应[21] 。综上所述,硒在肿瘤形成中对表观遗传修饰异常产生干预影响,靶向抑制肿瘤特异性表观标志物,逆转表观遗传修饰发生异化过程,使我们认识了硒化学抗癌的新机制、新作用,硒化物是潜在开发的新型靶向抗癌药物。Fernandes 等[15]指出,硒化物都是癌症治疗药。目前,非表观类含硒靶向抗癌药如硒唑呋喃、依布硒啉、乙烷硒啉等早已进入临床研究[16],展示出很有希望的临床应用前景。而含硒表观靶向抗癌药物是亟待开发的抗癌药“富矿”,加快开发含硒表观靶向抗癌药物,可为临床肿瘤治疗增加一种“新的工具”,为癌症患者战胜病魔增添一份新的希望。人们热切期盼“含硒表观分子靶向抗癌药物”早日问世。

致谢:本课题研究得到华中科技大学徐辉碧、黄开勋两位教授和安徽医科大学张文昌硕士的支持,在此表示衷心感谢。

参考文献

[1] 王杰, 徐友信, 刁其玉, 等. 非孟德尔遗传模式: 表观遗传学及其应用研究进展[J]. 中国农学通报, 2016, 32(14): 37-43.

[2] 胡琛霏. 甲基硒酸调控食管鳞癌细胞表观遗传改变的机制研究[D]. 北京: 北京协和医学院, 中国医学科学院, 2014.

[3] 华岩. 硒·生命的营养素[M]. 北京: 北京大学出版社, 2015: 97-98.

[4] 徐世文, 蒋智慧, 王超, 等. 硒缺乏对鸡肌肉组织DNA甲基化水平的影响[J]. 东北农业大学学报, 2012, 43(9): 42-46.

[5] 陆嵘, 房静远. 表观遗传修饰与肿瘤[J]. 生命科学, 2006, 18(1): 10-14.

[6] 腾丽娟, 张长松, 李克. 营养与肿瘤表观遗传学关系的研究进展——DNA甲基化机制[J]. 医学研究生学报, 2008, 21(1): 95-97.

[7] 尹惠子, 单明, 尤子龙, 等. 肿瘤发生过程中表观遗传学机制——DNA甲基化的研究进展[J]. 实用肿瘤学杂志, 2015, 29(2): 173-177.

[8] Remely M, Lovrecic L, de la Garza AL, et al. Therapeutic perspectives of epigenetically active nutrients[J]. Br J Pharmacol, 2015, 172(11): 2756-2768.

[9] Davis CD, Uthus EO, Finley JW. Dietary selenium and arsenic affect DNA methylation in vitro in caco-2 cells and in vivo in rat liver and colon[J]. J Nutr, 2000, 130(12): 2903-2909.

[10] Speckmann B, Grune T. Epigenetic effects of selenium and their implications for health[J]. Epigenetics, 2015, 10(3): 179-190.

[11] Somech R, Izraeli S, J Simon A. Histone deacetylase inhibitors—new tool to treat cancer[J]. Cancer Treat Rev, 2004, 30(5): 461-472.

[12] Xiang N, Zhao R, Song G, et al. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells[J]. Carcinogenesis, 2008, 29(11): 2175-2181.

[13] Kassam S, Goenaga-Infante H, Maharaj L, et al. Methylseleninic acid inhibits HDAC activity in diffuse large B-cell lymphoma cell lines[J]. Cancer Chemother Pharmacol, 2011, 68(3): 815-821.

[14] Rajendran P, Ho E, Williams DE, et al. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells[J/OL]. Clin Epigenetics, 2011, 3(1): 4. doi: 10.1186/1868-7083-3-4.

[15] Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer[J]. Biochim Biophys Acta, 2015, 1850(8): 1642-1660.

[16] 陳宝泉, 史艳萍, 李彩文, 等. 基于硒元素的抗癌药物研究进展[J]. 化学通报, 2011, 74(8): 709-714.

[17] 汪建林, 杨西胜, 李小磊, 等. miR-200a与肿瘤关系[J].现代肿瘤医学, 2013, 21(12): 2853-2856.

[18] 殷园园, 武夏芳, 武端端, 等. 核因子E2相关因子2在肝癌发生发展及治疗中作用的研究进展[J]. 环境与健康杂志, 2016, 33(2): 178-181.

[19] Saydam O, Shen Y, Würdinger T, et al. Dowegulated microRNA-200a inmeningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway[J]. Mol Cell Biol, 2009, 29(21): 5923-5940.

[20] 黄祯, 肖卫东. 胰腺癌Wnt/β-catenin信号通路的研究进展[J]. 广东医学, 2014, 35(21): 3445-3447.

[21] 黄开勋, 徐辉碧, 刘琼, 等.硒的化学, 生物化学及其在生命科学中的应用[M].2 版.武汉: 华中科技大学出版社, 2009: 327-328.

相关热词搜索: 表观 靶向 抗癌 药物 期待