当前位置: 首页 > 范文大全 > 公文范文 >

一元一次方程与实际应用

时间:2022-01-18 16:35:44 来源:网友投稿

  实际问题与一元一次方程 教学目标:1 、帮助学生根据问题中的数量关系找出等量关系,列出方程。

  2、培养学生分析问题,解决实际问题的能力。

 3、让学生体验建立方程模型解决问题的一般过程。

 教学重难点:

 教学重点:帮助学生建立方程模型解决实际问题。

  教学难点:培养学生的化归思想。

 :

 教学过程:(1)复习引入:解一元一次方程应用题的六大步骤是什么?

 (2)回顾常见的一元一次方程应用题类型? 一、 行程问题

 关系式为:路程=速度×时间

 航行问题是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化:①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。由此可得到航行问题中一个重要等量关系:

 顺水(风)速度-水流速度(风速)=逆水(风)速度+ + 水流速度(风速)=静水(无风)速度。

 二、 工程问题

 关系式为:①工作量=工作效率×工作时间 工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为 t,则工作效率为 。

 三、 数字问题

 数字问题是常见的数学问题。一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:如两位数 =10a+b;三位数 =100a+10b+c。在求解数字问题时要注意整体设元思想的运用。

 四、 利润问题

 关系式有:①利润=销售价(收入)-成本(进价)【成本(进价)=销售价(收入)-利润】;②利润率= 【利润=成本(进价)×利润率】

 与生活、生产实际相关的经济类应用题,是近年中考数学创新题中的一个突出类型。在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程。

 五、 调配 问题

 调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。在调配问题中主要考虑“总量不变”。

  六、 年龄问题

  年龄问题中,解题的关键在于在同一段时间中,所有人增长的岁数是一样的,即年龄差是一样的。

 七、 比赛积分问题

 关系式有:胜场积分+负场积分=所有积分 八、 选择方案问题

  选择方案问题 ,注意分析两种方案在不同情况下实施的结果是不一样的。

 (3 )例题解析:

 例 1、兄弟二人今年分别为 20 岁和 9 岁,若干年后兄的年龄是弟的年龄的 2 倍,请问若干年后兄为多少岁?

  联系课本习题:1、父亲和女儿的年龄之和为 91,当父亲的年龄为女儿现在年龄的 2 倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?

 例 2、某商品月末的进货价比月初的进货价降了 8%,而销售价不变,这样利润率月末比月初高 10%,问月初的利润率是多少?

 联系课本习题:2、现对商品降价 20%促销,为了使销售总额不变,销售量要比按原价销售时增加百分之几?

 例 3、一轮船从 A 城顺流而下 8 小时到达 B 城,原路返回要 10 小时,则一个木排从 A 城顺流漂至 B 城要多少小时?

 联系课本习题:3、在风速为 24km/h 的条件下,一架飞机顺风从 A 机场飞到 B 机场要用 2.8h,它逆风从 B 机场飞到 A 机场要用 3h,求两机场之间的航程?

 (4)课堂小结:谈谈你在这节课上的收获

 (5)课后作业:习题选做 1、2、3

相关热词搜索: 方程 实际应用