轮轴,顾名思义是由“轮”和“轴”组成的系统。该系统能绕共轴线旋转,相当于以轴心为支点,半径为杆的杠杆系统。所以,轮轴能够改变扭力的力矩,从而达到改变扭力的大小, 以下是为大家整理的关于凸轮轴噪声实验总结3篇 , 供大家参考选择。
凸轮轴噪声实验总结3篇
【篇一】凸轮轴噪声实验总结
上止点(TDC)、曲轴(CKP)、凸轮轴(CMP)传感器
1.基本传感器分类波形
①霍尔效应传感器,参见图19。
霍尔效应传感器在汽车应用于上是有特殊意义的,它是固态半导体传感器,用在曲轴转角和凸轮轴上来通断点火和燃油喷射触发电路的开关,它们也应用在控制电脑需要了解的转动部件的位置和速度的其它电路上,例如车速传感器等等。
霍尔效应传感器(或开关)由一个永久磁铁或磁极的几乎完全闭合的磁路组成,一个软磁叶轮转过磁铁和磁极之间的空隙,当在叶轮上的窗口允许磁场通过,并不受阻碍的传到霍尔效应传感器上的时候,磁场就中断了(因叶片是传导磁场到传感器上的媒体),叶轮在窗口开和闭遮断磁场,导致霍尔效应传感器像开关一样接通和关断,这就是为什么一些汽车制造商将霍尔效应传感器和其它一些类似的电子设备称为霍尔开关的原因。这个装置实际上是一个开关设备,而它包含有关键功能的部件霍尔效应传感器。
试验步骤
起动发动机,让发动机怠速运转或让汽车在行驶能力有故障的状况下行驶。
波形结果
确认从一个脉冲到另一个脉冲幅值,频率和形状等判定性尺寸是一致的,这意味着数值脉冲的幅度足够高(通常等于传感器供电电压),脉冲间隔一致(同步脉冲除外),形状一致且可预测。
确认频率紧跟发动机转速,当同步脉冲出现时占空比才改变,能使占空比改变的唯一理由是不同宽度的转子叶片经过传感器,除此之外脉冲之间的任何其它变化都意味着故障。
了解波形形状的一致性,检查波形上下沿部分的拐角,检查波形幅值的一致性,由于传感器供电电压不变,因此所有波形的高度应相等,实际应用中有些波形有缺痕或上下各部分有不规则形状,这也许是正常的,在这里关键是一致性,确认波形离地不是太高,若太高说明电阻太大或接地不良。
检查标准波形异常是由于发动机异响或行驶能力故障同步,这能证实与顾客陈述的问题或行驶性能故障的根本原因有直接关系的信号问题。
虽然霍尔效应传感器通常被设计在150摄氏度高温下运行,但它们的运行还是会受温度影响。许多霍尔效应传感器在一定温度下(冷或热)会失效。
如果在示波器上显示波形不正常,查找不良的线束和插头,也要检查示波器的接线,确认相关部件在转动(分电器转动等),当故障出现在示波器上时,摆动线束,这可以进一步判断霍尔效应传感器是否是故障的根本原因。
如果霍尔效应传感器电路包含同步脉冲,试接入第一缸触发信号来稳定波形,从第一缸火花塞高压线的触发输入信号,可以帮助稳定示波器上的波形,没有第一缸触发信号,在同步脉冲、频率不一致时,触发器通常给示波器的工作造成麻烦,如波形跳动或变得杂乱。
②磁电式传感器,参见图20。
有两种最普通的传感器转动轴的方法:一个是磁电式,一个是光电式传感器。在许多北美、亚洲和欧洲制造的汽车上,从最便宜的到最豪华的车型都采用磁阻型或感应型传感器来传感曲轴位置(CKP)和凸轮轴位置(CMP),它们被用来传感像车速传感器,防抱死系统车轮传感器等其它转动部件的速度和位置。
磁电式传感器是模拟交流信号发生器,这意味着它们产生交流信号,它们一般由绕着线圈的磁铁和两个接线端组成。这两个线圈端子就是传感器的输出端子,当铁质环状齿轮(有时称为磁阻轮)转动经过传感器时,线圈里会产生电压。
磁组轮上相同齿型会产生相同型式的连续脉冲,脉冲有一致的形状幅值(峰对峰电压)与曲轴凸轮轴磁组轮的转速成正比,输出信号的频率基于磁组轮的转动速度,传感受器磁极与磁组轮间气隙对传感器信号的幅值影响极大,靠除去传感器上一个齿或两个相互靠近的齿所产生的同步脉冲,可以确定上止点的信号。这会引起输出信号频率的变化,而在齿减少的情况下,幅值也会变化。固体电子控制装置,例如控制电脑或点火模块,随即测出同步脉冲并用它去触发点火或燃油喷射器。
磁电式曲轴或凸轮轴位置传感器可以安装在分电器内,也可以安装在曲轴和凸轮中部、前部和后部,它们是双线传感器,但它们的两条线被裹在屏蔽线中间,这是因为它们的信号有些敏感,用电子术语说,就是容易受高压点火线,车载电话等电子设备的电磁干扰(电磁干扰EMI或射频干扰RF电磁或射频干扰会改变信号判定性尺度,并在“电子通讯”中产生故障,它会引起行驶性能故障或产生故障码。
试验步骤
起动发动机,让发动机怠速运转或让汽车在行驶能力有故障的状况下行驶。
波形结果
不同型式的凸轮轴和曲轴位置传感器产生多种形状的交流波形,分析磁电式传感器的波形的,一个参考波形是会有很大帮助的,波形的上下波动,不可能是0V电平的上和下完美的对称,但大多数传感器将是相当接近,磁电式曲轴或凸轮位置传感器的幅值随转速而增加,转速增加,波形高度相对增加。
确定幅值、频率和形状在确定的条件下是一致的(转速等)、可重复的、有规律的和可预测的,这意味着峰值的幅度应该足够高,两脉冲时间间隔(频率)一致(除同步脉冲),形状一致并可预测。
确认波形的频率同发动机转速同步变化,两个脉冲间隔只是在同步脉冲出现时才改变,能使两脉冲间隔时间改变的唯一理由是磁组轮上的齿轮数缺少或特殊齿经过传感器,任何其它改变脉冲间隔时间都可以意味着故障。
检查发动机异响和行驶性能故障与波形的异常是否有关,这可以证实信号所表现的问题是否与顾客陈述的现象或行驶性能故障有直接的关系。
不同类型的传感器的波形峰值电压和形状并不相同,由于线圈是传感器的核心部分,所以故障往往与温度关系密切。大多数情况是波形峰值变小或变形,同时出现发动机失速、断火或熄火。通常最常见的交流传感器故障是根本不产生信号。
如果波形出现异常,检查不良的线路和接线插头,确认线路没有搭铁,检查示波器和传感器连线,确认相关的部件是转动的(分电器/凸轮轴/曲轴是转动的等),当故障出现在示波器上的摇动线束,这可以进一步证明磁电式传感器是否是故障的根本原因。
如果磁电式传感器电路包括同步脉冲,试用1缸触发来稳定波形,从1缸火花塞高压线上引入触发信号帮助稳定显示波形,如果没有1缸触发信号,同步脉冲波形的频率变化会使示波器出现问题,即波形跳动不稳。
③光电式传感器,参见图21。
光电式传感器在汽车中应用是因为它可以传感转动元件的位置(甚至在发动机不转的情况),同时它还可以便脉冲信号的幅值在速度变化即保仍持不变,近来高温光导纤维技术的发展使得光电传感器在汽车方面的应用增加了。光电传感器另一个优点是不受磁电干扰(EMI)的影响,它们是固体光电半导体传感器,被用在曲轴和凸轮轴上去控制点火和燃油喷射电路的开关。它们也被用在控制电路,问题非常敏感。光电式传感器的功能元件通常被密封很好,但损坏的分电器组套或密封垫,以及当维修时可能使油污和污物进入敏感区域造成污损,这些就可能引起不能起动,失速和断火。
如果示波器显示波形异常,检查不良的线和线束插头,检查示波器和传感器的连线,确认相应的零件是在转动的(分电器等),当故障出现在示波器上的时候,摇动线束,这可以提供进一步证据,证明光电传感器是否是故障的真正的根本原因。
2.起动试验
起动时,遇到曲轴转动但发动机不能发动的情况下可以进行起动试验。对于行驶性能、排放及顾客反映的问题,应考虑以下三个问题:
a.什么是故障产生的重要原因;
b.检查这个故障的难易程度;
c.故障电路或元件维修的难易程度;
对于不能起动故障的诊断可以遵循以下规律:通常发动机不能起动可能是由于:
a.燃油不能进入气缸;
b.火花塞不能点火;
c.机械系统故障。
如果机械故障不存在的话,示波器就能够避开不必要的步骤,直接确定故障的根本原因。示波器可以迅速可靠地查出燃油喷射系统电路和曲轴转角传感器电路以及点火初、次级电路故障,当怀疑磁电式上止点(TDC)位置、曲轴(CKP)位置、凸轮轴(CKP)位置传感器有故障时,可以应用这个示波器试验步骤来检查。
①磁电式上止点(TDC)传感器,参见图22。
②磁电式曲轴转角传感器,参见图23。
③磁电式上止点、曲轴转角传感器波形分析
在进行起动试验时,观察示波器,在大多数情况下:如果传感器或电路有故障,将完全没有信号,在示波器中间零线位置上是一条直线这是很重要的诊断资料。
如果示波器显示在零电位这是一条直线,那么:
a.确定示波器到传感器的连接是正常的;
b.确定相关的零件是否旋转(分电器轴、曲轴、凸轮轴);
c.检查传感器是否损坏及磁电式传感器的空气间隙是否适当。
通常可以查阅厂商提供的气隙允许值范围,这是很重要的,如果传感器的接线和示波器的接线良好,传感器轴是旋转的,气隙也是正常的,那么传感器很可能是故障的原因。在比较少的例子中,点火模块或发动机控制电脑被传感器内部电路搭铁接地,这可以用拔下传感器插头后再用示波器测试的方法来判断。
如果可以观察到一个脉冲信号,就可以分析它的波形,不同型式的凸轮轴和曲轴传感器会产生多种交流信号波形,当分析磁电式传感器波形时,有一个能用来比较的参考波形是很有帮助的。由于磁电式传感器信号振幅与发动机转速成正比,所以许多磁电式传感器在发动机起动时(100-200转/分)输出的信号振幅很低,确定发动机起动的的信号幅度是适当的,因为发动机起动的速度低会影响传给点火模块或发动机电脑的信号幅值达不到规定的值。
通常波形中上升和下降的波形不完全对称于零线,但大多数传感器都是相当接近的,上止点和曲轴位置及磁电式传感器振幅将随着适当的转速增加而增加,转速越快、波形的幅值越高,而且转速增加的波形频率也增加,这意味着示波器上会有更多的波形显示出来。确认根据振幅、频率、形状来判定度量在相同条件下(发动机转速等)是有重复性的、有规律、可预值的。这意味着波形幅值足够高.两脉冲时隔即频率可重复(同步脉冲除外),形状可重复和可预估。
波形的频率与发动机转速保持同步,两个脉冲间断时间只在同步脉冲出现时才有变化,有一种可能使得两脉冲间隔时间变化,那就是当角度齿轮经过传感器时丢失或多出齿数。记住:发动机起动时旋转速度不可能是不变的,在压缩同时和进气行程之间曲轴实际上在加速和减速,这使得波形的频率和幅值随转速改变而同时增加或减少,在脉冲之间的其它任何变化都可能意味着故障。
不同型式的传感器的波形峰值电压和形状是不同的,许多磁电式传感器在起动时产生很小的信号,再者,由于传感器的故障是根本不产生信号。
如果示波器显示不正常波形,应先检查线路和接线端,确认线路没有搭铁,再检查示波器和传感器的连线,还要确认机械转动部分(分电器/凸轮轴/曲轴)转动是否正常,当故障出现在示波器上时,摇动线束,这可以进一步判断磁电式传感器是否是故障的根本原因。
④霍尔式曲轴位置传感器,参见图24。
霍尔效应传感器在自动化应用中具有特殊意义,它安装在凸轮轴与曲轴处,用于触发点火和燃油喷射电路的开关。它也用在控制电脑需要控制速度和位置的地方,例如汽车速度传感器。
⑤光电式曲轴位置传感器,参见图25。
汽车上应用光电式传感器是因为它可以在发动机不转动的情况下传感传动部件的位置,并且在任何转速下脉冲幅度都保持不变,最近高温光导纤维技术方面的进步,使得光电式传感器在汽车应用方面增加了,光电工传感器的另一方面优点是它不受电磁干扰(EMI)的影响。
⑥霍尔效应和光电式传感器的波形分析
A.如果在示波器0V电压处显示一条直线
a.确认示波器和传感器连接良好;
b.确认相关的元件都在转动(分电器、曲轴、凸轮轴等);
c.用示波器检查传感器的电源电路和控制电脑的电源及接地电路;
d.检查电源电压和传感器参考电压。
B.如果在示波器上显示传感器电源电压处的一条直线
a.检查传感器的接地电路的完整性;
b.确认相关的元件都在转动(分电器、曲轴、凸轮轴等)。
如果传感器的电源接地良好,示波器显示传感器供给电源电压处显示一条直线,那么很可能传感器损坏是主要原因。
C.如果有脉冲信号存在,确认从一个脉冲到另一个脉冲的幅度、频率、形状等判定性度量,数字脉冲的幅度必须够高(通常在起动时等于传感器供给电压)。两个脉冲间的时间不变(同步脉冲除外),并且形状是重复可预测的。
检查波形形状的一致性,检查波形顶部和底部的拐角,检查波形幅值的一致性,因为供给传感器的电压是不变的,所以波形的脉冲高度应相等,确认波形对地电压并不太高,若过高说明电阻太大或接地不良。
如果示波器上波形显示不正常,查找不良的电线或损坏的插头,检查示波器和传感器测试线,确任相关部件的转动正常(分电器、转轴等)当问题显示在示波器上时,摇动线索可以进一步判定是否是霍尔效应或光电式传感器问题。
3.用第一缸触发试验
通常可以在一个曲轴或凸轮轴位置传感器上,看到各缸或某上止点的同步脉冲及标志脉冲信号,这个信号的设置会使传感器的频率和占空比在这个信号出现时发生改变,进而导致以自触发方式显示的波形失常,因此改用第一缸触发,可以圆满的解决这个问题。
①上止点传感器,参见图26。
当波形有同步脉冲或标志脉冲时,这个试验对上止点(TDC)、曲轴和凸轮轴位置传感器的波形观察是很有效的,从第一缸火花塞高压线提取的触发输入帮助稳定显示出波形,如果没有第一缸触发,示波器在同步脉冲波形的频率一致时,触发会遇到麻烦,以致在显示出波形跳动像神经质似的。正确的波形要求与磁电式传感器相同。
②霍尔式曲轴、凸轮轴传感器,参见图27。
当被诊断信号有同步脉冲时,这个测试对霍尔效应曲轴转角和凸轮轴位置传感器非常有效,从第一缸火花塞高压线提取的触发输入信号可以帮助稳定显示波形。如果没有第一缸触发,在波形的同步脉冲的频率变化时,示波器触发通常有麻烦,即波形跳动不稳定。正确波形分析方法与霍尔效应传感器相同。
③磁电式曲轴、凸轮轴传感器,参见图28。
当有同步脉冲和标志脉冲信号的,这个试验对磁电式曲轴和凸轮轴位置传感器非常有效,从第一缸火花塞高压线提取触发信号可以帮助稳定显示波形,如果没有第一缸触发,在波形的同步脉冲的频率变化时,示波器触发信号出现问题,使得波形不稳定的移动。正确的波形分析方式与磁电式传感器相同。
④光电式曲轴、凸轮轴传感器,参见图29。
当反映各缸上止点的同步或标志脉冲信号出现,这个试验对光电式曲轴和凸轮轴传感器非常有效。从第一缸火花塞高压线提取的触发输入信号能也使得示波器波形稳定的显示。如果没有第一缸触发信号波形在这种情况下会产生不正常波动。正确的波形分析与光电传感器相同。
4.双通道测试
用双通道或双踪示波器来同时分析凸轮轴和曲轴位置传感器的信号,是很有用的分析方法,它不仅可以使观察两个传感器波形是否正确,同时还可以帮助分析两个传感器所反应的凸轮轴和曲轴在旋转中相位关系。
①磁电式凸轮轴和曲轴位置传感器,参见图30。
这是双踪示波器测试磁电式凸轮轴和曲轴传感器的波形,它可以把两个相互有着重要关系的传感器或电路的波形同时显示在示波器的屏幕上,用这个试验可以同时诊断磁电式曲轴和凸轮车轮轴位置传感器或检查曲轴和凸轮轴之间的正时。正常波形分析与磁电式传感器相同。
②霍尔式凸轮轴和曲轴位置传感器,参见图31。
这是一个双踪示波器测试,霍尔式凸轮轴和曲轴位置传感器的波形是从两个传感器上测出的两个波形,它们相互之间的重要联系同时显示在示波器上,用这个测试步骤可以同时诊断曲轴和凸轮轴与曲轴之间的正时关系。
正确波形的分析方法与霍尔效应传感器相同。
【篇二】凸轮轴噪声实验总结
凸轮轴工艺设计的概述
设计的目的
这次毕业设计的目的就是要对轴类零件的半成品以后的磨削加工有所了解,运用所学的关于磨削加工的理论知识培养自己分析和解决问题的能力,提高自己的设计能力和创新设计能力。对整个的知识体系有个更好的串联!
设计任务
本次设计的任务是让我们综合运用我们所学的机械设计基础、数控编程、机械制图、CAD制图技术、机械制造工艺等知识,来完成凸轮轴零件的三维造型设计、凸轮轴零件工艺规程文件编制、相关数控程序编制和相关夹具的设计。
凸轮轴设计方法
常规设计方法
他们是根据力学和数学建立的理论公式和经验公式,运用图表和手等技术资料,以实践经验为基础,进行设计计算、绘图和编写设计说明书,利用普通凸轮磨机床进行加工。
创新设计方法
现代设计方法强调是以计算机为工具,以工程软件为基础,运用现代设计理念,进行机械产品的设计,如凸轮轴设计就是运用UG辅助制图,这样就可以优化设计,提高其生产效率。
凸轮轴设计的结果和意义
凸轮轴设计的结果
运用计算机辅助制图软件,优化设计,在提高生产效率、提高产品质量的前提下,寻求最好的工艺方案,以至于减少砂轮的磨损。这些将在工艺和编程上体现。
凸轮轴设计的意义
凸轮轴是一个精密零件,也是轴类零件中比较复杂的一种曲轴,他的磨削要求也比较严格,每一个凸轮角度都要控制在公差范围内。但是还有一些复杂的问题没有得到改善,在工艺规程设计方面也欠佳,数控编程方面也不是很完好以及其它地方还存在很大问题。
3.4
夹具的设计
磨床家具按其通用化的程度和结构特点,可分为通用夹具、专用夹具、组合夹具和成组可调夹具等等。凸轮轴加工时采用的是传动夹头,属于组合夹具类型。
组合夹具是在夹具零部件标准化的基础上发展起来的一种新型工艺装备。它是由一套预先制造好的标准元件组装而成的。这些元件有各种不同的形状、不同规格的尺寸,它们相互配合部分的尺寸精度高、硬度好、耐磨性好,且具有完全的互换性。根据加工工艺的要求,可通过选择和使用标准原件和组合元件,很快装配出机械加工、检验、装配等所需的夹具来。使用完毕,可方便拆卸、清洗、存放、留待以后再使用。
组合夹具的特点:
1、灵活多变;
2、保证加工质量;
3、节省人力和物理;
4、减少夹具存放面积。
组合夹具的元件按其用途不同可以分为八大类,即:基础元件、支撑元件、定位元件、导向元件、压紧元件、紧固元件、辅助元件及合件。其中,紧固元件包括各种螺栓、螺钉、螺母和垫圈等,这些紧固元件均为常用的标准件。如图6
3.61外圆磨削
1、机床选定:选用最常见的有MB1320外圆磨床和MK1620端面外圆磨床
2、夹紧方案:利用螺母和两顶尖进行夹紧
3、刀具:外圆磨砂轮
4、切削用量选择
切削用量选择的顺序是先确定背吃刀量@p,在确定进给量f,最后确定切削速度Uc。
圈1、背吃刀量@p
应选择尽量大的背吃刀量,尽量在一次走刀中,把本工序加工应切除的加工余量切除掉。
在粗加工时,当加工余量过大或工艺系统刚性较差时,可分为两次走刀。
在这一道工序中采用一次进刀:
@p=(2/3~3/4) A=(2/3~3/4)=0.99
式中A--------单边余量,mm
圈2、进给量f
定义:工件或刀具每转一周时,刀具与工件再进给运动方方向上的相对位移量。
【篇三】凸轮轴噪声实验总结
凸轮轴的加工工艺
凸轮轴的加工工艺凸轮轴的材料:球墨铸铁、合金铸铁、冷激铸铁、中碳钢
球墨铸铁:将接近灰铸铁成份的铁水经镁或镁的合金或其它球化剂球化处理后而获得具有球状石墨的铸铁。石墨呈球状,大大减轻了石墨对基体的分割性和尖口作用,球墨铸铁具有较高的强度、耐磨性、抗氧化性、减震性及较小的缺口敏感性。
球墨铸铁的凸轮轴一般用在单缸内燃机上,如S195柴油机,做凸轮轴用的球墨铸铁用QT600-3或QT700-2,要求球化为2级(石墨球化率90-95%)石墨粒度大小大于6级。凸轮轴整体硬度HB230-280
合金铸铁:将接近灰铸铁成份的铁水加入Mn、Cr、Mo、Cu等元素。从而与珠光体形成合金,减少铁素体的数量。合金铸铁的凸轮轴一般用于高转速凸轮轴。如CAC480凸轮轴,凸轮轴整体硬度HB263-311。
冷激铸铁:一般用于低合金铸铁表面冷激处理,使外层为白口或麻口组织,心部仍是灰口组织。如:372凸轮轴。使用冷激铸铁的凸轮轴处于干摩擦或半干摩擦工作状态,而具有承受较大的弯曲与接触应力,要求材料表面层抗磨且高的强度,心部仍有一定的韧性。目前国内所用的冷激铸铁主要有两大类:铬、钼、铜冷激铸铁和铬、钼、镍冷激铸铁,冷硬层的金相组织:莱氏体+珠光体(索氏体)冷激铸铁硬度为HRC45—52,目前,国内冷激铸铁的硬度在HRC47左右。
中碳钢:一般用于大型发动机凸轮轴。如:6102发动机采用模锻锻造成型,也有一部分用于摩托凸轮轴,成型较简单。模锻后一般要进行退火处理以便于机械加工。
一.凸轮轴轴颈粗加工采用无心磨床磨削
无心磨床的磨削方式有2种:贯穿式无心磨削和切入式无心磨削。贯穿式无心磨削一般用于单砂轮,它的导轮是单叶双曲面,推动凸轮轴沿轴向移动,仅仅用于磨削光轴。切入式无心磨削是由多砂轮磨削(若是单砂轮磨削,一般砂轮被修整成成型砂轮,如:磨削液压挺柱的球面),如现有480凸轮轴的磨削,可磨削阶梯轴,导轮为多片盘状组合而成,工件不能沿轴向移动,无论是哪一种磨削方式,工件的中心都高于砂轮和导轮的中心,一般切入式磨削都有上料工位、磨削工位、测量工位、卸料工位组成。砂轮线速度60m/s,轴颈径向磨削余量可达3.5mm,单件磨削时间18s,单件工时25s。用无心磨床加工凸轮轴是一种新颖、独特的新工艺,新方法,但又存在一定的局限性,特别是不易磨削轴肩和端面,一般不用于多品种凸轮轴的加工,只用于单一品种、大批量的生产,若要更换所加工的凸轮轴品种,就要更换导轮和砂轮,各砂轮间距需重新调整。切入式无心磨床的修整一般采用单颗粒金刚石修整,修整器所走的路线是凸字形,修整器靠模各段差值与凸轮轴的各段轴颈差值相等。粗磨凸轮轴轴颈所用的砂轮都属于碳化物系列,粒度为60,砂轮线速度为45m/。
二、铣端面,钻中心孔
中心孔加工是以后加工工序的定位基准,在铣端面时,一般只限定5个自由度即可,用2个V型块限定4个自由度,轴向自由度是由凸轮轴3#轴颈前端面或后端面(在产品设计中,该面应提出具体要求)。目前普遍采用的是自定心定位夹紧,密齿刀盘铣削。轴向尺寸保证后端面到毛坯的粗定位基准尺寸和整个凸轮轴长度,鉴于凸轮轴皮带轮轴颈尺寸较小,钻中心孔时一般选用B5中心钻,钻后的孔深用φ10钢球辅助检查,保证球顶到后端面尺寸和2钢球顶部之间的距离,这样可保证以后定位的一致性。
三、凸轮轴的热处理
热处理:将原材料或未成品置于空气或特定介质中,用适当方式进行加热、保温和冷却,使之获得人们所需要的力学或工艺性能的工艺方法。
热处理分类:一般热处理、化学热处理、表面热处理
球墨铸铁凸轮轴一般都是等温淬火。冷却介质为10号、20号锭子油盐浴或碱浴,淬火后经140°C-250°C低温回火,回火后的组织为黑色针叶状马氏体,硬度HRC50-54。
合金铸铁和钢件凸轮轴一般采用中频淬火:淬火频率1000-10000Hz,一般选用7000Hz。也就是感应加热表面淬火,其原理是:将凸轮轴的凸轮放入加热线圈中,由于电流的集肤效应,使凸轮由外层向内加热、升温,使表层一定深度组织转变成奥氏体,而后迅速淬硬的工艺,目前480凸轮轴采用自然回火的方法,其凸轮表面组织为针状马氏体。
凸轮轴经表面热处理:可较大地提高零件的扭转和弯曲疲劳强度和表面的耐磨性。
感应加热淬火变形小、节能、成本低、劳动生产率高、淬火机可放在冷加工生产线上,便于生产管理。
480凸轮轴中频淬火机在感应加热时,要对电源、变压器、感应线圈进行冷却,要求冷却水的温度在25°C-30°C,淬火冷却液的温度为53°C-62°C,若机床本身达不到要求,必须在机床外提一套附加冷却装置,用来给冷却水制冷。
四、凸轮轴的深孔加工
在机械加工中L/D>5时的孔加工可称为深孔加工,用普通麻花钻钻深孔时有以下困难。
1.钻头细长。刚性差,加工时钻头易弯曲和振动,难以保证孔的直线度与加工精度。
2.切屑多,而排除切屑的通道长而狭窄,切屑不容易排出。
3.孔深切削液不易进入,切削温度过高,散热困难,钻头容易断。
深孔钻按工艺的不同可分为在实心物体上钻孔、扩孔、套料3种,而以在实心料上钻孔用得最多,如480凸轮所用的深孔都是由枪钻经2头加工而成的。每次钻孔深为L/2+10mm。
枪钻钻削是单刃外排屑式的,一般适用于加工φ2-φ20mm孔, L/D>100、表面粗糙度Ra12.5-3.2mm、精度H8-H10级的深孔。单刃外排屑深孔钻,最早用于加工枪管,故称枪钻,也是φ2-φ6mm深孔加工的唯一办法。枪钻带有V形切削刃和一个切削液孔的钻头、钻杆、及适用于某专用设备的钻柄组成。高压切削液(7MPa)通过钻头的小孔送到切削区域内,进行冷却、润滑并帮助排屑,然后再将切屑与切削液顺着V型刀杆排入集中冷却系统中。钻头为硬质合金,采用焊接式结构。切削用量一般为0.06-0.1mm/r,为了更好地控制刀具的破损程度,刀具采用径向负荷反馈,一旦刀具切削力达到一定的数值,在数控系统的作用下,刀具能自动退回,从而避免枪钻折断,提高刀具的使用寿命。磨钝后的刀具换下,再重新进行刃磨后方可使用。
凸轮轴深孔加工冷却液一般用锭子油,虽然油的冷却效果比乳化液差,但油的润滑效果比冷却液要好得多。
五、主轴颈快速点磨加工与CBN砂轮
快速点磨是德国勇克公司开发出来的一种先进的外圆高效磨削新工艺,该机床加工凸轮轴只需两顶尖定位夹紧,无需任何夹紧工具,利用前顶尖的高速旋转,通过顶尖和凸轮轴中心孔的摩擦来驱动工件运动,可以实现轴类零件在一次装夹后,用一片砂轮完成7个轴颈、一个端面和一个磨削圆角的工艺。
快速点磨砂轮是横向磨损,在磨损过程中,被磨削的凸轮轴外形尺寸不会因此而发生变化,磨削端面时,砂轮可倾斜±0.5 ,使砂轮与工件的接触面只有传统磨削端面的1/2。
CBN具有良好的导热性,其导热率是硬质合金的13倍,铜的3倍,另外CBN具有远优于金刚石的热稳定性和化学稳定性(金刚石与铁簇元素易产生亲和作用),可耐1300—1500的高温,并且与铁簇元素有很大的化学惰性,CBN是制作切削黑色金属的理想刀具材料。
CBN属于立方晶系,它的硬度、强度和其它物理性能远远优于刚玉等系列磨料。在进行磨削过程中CBN自身磨损非常少,在大批量生产过程中,单个零件所需要的成本较小。砂轮的形状、尺寸变化极小,耐用度较高,修整频次约为刚玉系列的1/20,每次修整量约为刚玉系列的1/25,砂轮与工件的磨削区内磨削温度较低,可避免在磨削的弹性变形阶段工件所产生的裂纹和磨削烧伤等现象的出现。
CBN具有良好的化学稳定性与耐热性,与碳在2000 C时才起反应,在高温下易与水产生反应。砂轮的耐用度高,机床的使用率可达97%以上,与一般砂轮磨削相比,可提高功效600%--700%。
当砂轮在宽度方向的磨损量占砂轮宽度的80%时便对砂轮进行修整,砂轮每次修整量为0.006mm,共分3部进行修整,每一步修整量为0.002mm,每修整一次可磨削120根凸轮轴,砂轮线速度为120m/s,可获得较高的金属切除率,使用冷却油做为冷却液,不仅仅是给砂轮和工件提供冷却液,同时也给砂轮和工件提供更好的润滑,同时由于油膜的吸附作用,还可以防止凸轮轴的轴颈表面氧化,防止磨削完后的工件表面生锈。磨削液的供给是采用喷射法提供的冷却液,冷却较充分,可使砂轮的寿命提高一倍,金属切除率提高一倍以上,同时采用冷却液反冲的方法,冲洗砂轮表面,防止砂轮堵塞,使CBN颗粒始终以锋利的状态对工件进行切削,再加上CBN粒度较小,凸轮轴轴颈单位面积上参加切削的磨粒比一般砂轮要多,轴颈在被切削时所产生的弹性摩擦和变形阶段均较小,因此产生的弹性变形和塑性变形均较小,提高了表面粗糙度,防止表面产生磨削烧伤和因磨粒因素而引起的裂纹。在磨粒切削阶段,对产生的热应力和变形应力均较小。
由于磨削速度很高,磨削热量来不及传入工件的深处,瞬时聚集在凸轮轴很薄的表层,形成切屑被带走。磨粒切削点的温度达1000 C以上,而内部只有几十度
选用CBN砂轮磨削,磨粒锋利,磨削力小,故磨削区发热量少
CBN显微硬度7300—9000HV,抗弯强度300MPa、抗压强度800--1000MPa、热稳定性1250 C--1350 C。
应用声音传感器严格限制砂轮和金刚滚轮间的距离,主要是防止砂轮修整时砂轮和金刚滚轮发生撞击。砂轮架纵向进给时,传感器测头与砂轮间形成一小的缝隙,砂轮高速旋转压缩砂轮周围的空气,根据空气流通的通道大小不同,所产生的气阻声音大小不一样,从而判断传感器和砂轮间的缝隙而做出反馈,一旦砂轮和金刚滚轮产生接触,修整器自动修整砂轮,而声音传感器能根据声音尖锐响声大小来判断砂轮修整的正确性。
与树脂类结合剂相比,陶瓷结合剂化学性能稳定,耐热、抗酸、碱,气孔率大,工作时不易发热,在磨削过程中易脱落,热膨胀系数小,强度较高,能保持好CBN的几何形状,且磨具易修整。
用于磨削凸轮轴轴颈和端面的CBN砂轮立方氮化硼厚度只有4.5—5MM,并且是粘附在刚性钢盘上,刚性较好。
工件转速与砂轮转速的比为:40/8000
无进给磨削即光磨,可提高工件的几何精度和降低表面粗糙度参数值,表面粗糙度随光磨次数的增加而降低,细粒度砂轮比粗粒度好
砂轮的修整:修整通常包括整形和修锐,整形是使砂轮达到要求的几何形状和精度,砂轮的几何形状采用数控插补法进行,修锐是除去磨粒间的结合剂,使磨粒露出结合剂一定高度,形成切削刃,磨粒间空隙以容纳切屑。
金刚石滚轮磨削修整的特点:生产率高:以切入法进行修整,修整时间仅需2-10秒,可在进行凸轮轴更换工件时进行修整,不耽误生产节拍,同时由于金刚滚轮的寿命长,修整时间短,大大缩短了辅助时间,单件工件的消耗较低,金刚滚轮的精度较高,修整后的砂轮表面质量也较好。
矿物油冷却液的主要成份是轻质矿物油,加入适量的油溶性防锈添加剂。为了增加矿物油的润滑性能,常加入油性添加剂如脂肪酸等,以提高矿物油在低温低压时的渗透和润滑效果。矿物油的供给方法是喷射法,这样,可以提高供液压力,增大磨削液供给速度,以便将磨削热量迅速带走,并能冲破砂轮高速旋转的气流,使磨削液能有效的进入磨削区,改善磨削效果。由于砂轮的气孔小,磨削液必须经过精密过滤。由于磨削过程所产生的磨屑和砂粒等杂质在磨削液中不断增加,以至磨削液变脏变臭,不仅影响磨削工件的质量,还会危害环境卫生,快速点磨所用的过滤是柱状纸质过滤。
六、凸轮的加工
传统的凸轮加工采用靠模加工,一般来讲,第厂进、排气凸轮都 有一个母靠模,凸轮轴上有几个凸轮就有几个靠模,这种加工其实就是仿形加工,母靠模的加工误差也会复映到加工的成品凸轮上。具体来说,有以下缺陷。
1.砂轮的利用率也较低,以现生产的480凸轮轴为例,靠模机床砂轮线速度为60m/s,刚换上的砂轮直径为φ760mm,但使用到φ710mm后就必须重新换砂轮,否则凸轮的型面的误差会增大,砂轮从φ760mm磨损到φ710mm凸轮型面误差为±0.015mm.
2.工件头架电架为双速电机,凸轮轴只能用固定转速旋转、凸轮型面上多个磨削点的线速度不一样,磨削时单位时间的切除量和磨削力不一样,导致凸轮型面加工产生误差,且容易产生磨削烧伤和裂纹。凸轮等速磨削时型面误差为0.036mm。凸轮变速磨削时型面误差为0.012mm。
3.工件支承在装有尾架、中心架的摇架上,摇架机构往复摆动势头影响凸轮型面精度、粗糙度和生产效率的提高。
4.同一个靠模只能用于同一种凸轮轴,因此只适用于单一品种生产,否则就需要重新换靠模,不能实现柔性化,多品种生产。
现代的凸轮轴加工用数控磨削,具有如下特点:
1. 用一套数控装置(目前世界上最新的是西门子480D和FANAC210i)既控制工件主轴的无级变速旋转和分度又控制砂轮架按凸轮型面的升程数值和降程数值的往复运动及横向进给。
2. 工件主轴由NC装置控制的伺服电机驱动,实现无级变速传动,不仅可以实现粗磨和精磨所需要的不同转速,而且可以实现工件主轴在每转内按凸轮不同曲线进行自动变速磨削。这可以使凸轮型面上每一磨削点的线速度,金属切削量和磨削力基本一致,对保证凸轮表面的磨削质量是非常重要的。
3. 砂轮可实现高速、恒线速度磨削。如480凸轮轴kopp磨床80m/s.
4. 具有较大的柔性。CNC装置可以存贮20个凸轮轮廓数据和9个磨削数据。满足了凸轮轴多品种变化的柔性生产需要。
5. 砂轮主轴采用内平衡装置,取代了以前的液力平衡装置和机械平衡装置,平衡精度高,砂轮几乎不抖动,提高凸轮型面的磨削精度。
6. 采用金刚滚轮修整,修整时采用声速传感器来控制每次砂轮修整量,能得到好的砂轮修整精度,并且每次砂轮修整后NC装置能自动记忆并补偿。
7. 采用CBN砂轮,刚换上的新砂轮与换下来废砂轮之间半径方向只有4.5-5mm,从而保证凸轮型面的一致性。
七.凸轮轴的化学处理
编辑本段
化学处理是将金属置于一定化学介质中,通过化学反应在金属表面生成一种化学覆盖层使获得装饰、耐蚀、绝缘等不同的性能。化学处理一般有氧化处理和磷化处理。
磷化处理优点:
1. 凸轮轴的凸轮一般要经过磷化处理,经过磷化处理后的凸轮在大气中较稳定耐蚀性高于氧化处理,磷化后经重铬酸钾溶液填充浸油处理后,能进一步提高耐蚀性。
2. 磷化膜孔隙多,具有很强的吸附能力。
3. 具有润滑性和减摩性。
4. 具有较高的绝缘性。一般经磷化处理后的凸轮,在经过一段时间磨合后,在桃尖处磷化膜脱落变得铮亮,有利于凸轮和挺柱的初期磨合。一般来说,凸轮轴的磷化膜厚度为0.0025—0.006mm,为了保证凸轮轴的表面精度,要求磷化前的凸轮表面粗糙度0.6。
八、凸轮轴的抛光
凸轮轴的主轴颈、油封轴颈要求表面粗糙度0.2,所以必须除去主轴颈和油封轴颈的表面磷化膜,为了保证主轴颈和油封轴颈表面粗糙度,必须对它们进行抛光处理,在抛光过程中,由于摩擦生热少,磨;粒散热时间长,可有效地减少工件的变形、烧伤,主要是提高表面的加工精度,使凸轮轴轴颈获得光亮光滑的表面,但不能提高产品尺寸和几何精度,对零件的形位误差不产生任何改变,按目前的工艺水平,抛光砂带采用纸质砂带,砂粒的粒度280—320,抛光液选用煤油,抛光机的专用工装为硬质树脂制的上下两个半圆。
九、凸轮轴的探伤
由于凸轮与挺杆接触时,表面接触应力较大,凸轮表面不允许有任何缺陷,所以凸轮轴表面需要经过探伤,探伤分为两类:磁粉探伤和荧光探伤,主要探测凸轮在淬火过程中产生的淬火裂纹和磨削过程中产生的磨削裂纹。探伤也是一种无损检测方法,按现有的生产水平,荧光探伤比较干净,优于磁粉探伤,因为磁粉探伤除了要配置磁悬液外,现场生产也难得保持干净,并且经过退磁后,仍然有一部分磁通量流在凸轮轴上。
十、凸轮轴的清洗
凸轮轴不仅仅要进行表面清洗,更主要的是主油道的清洗和油孔的清洗,防止铁屑等脏物滞留在主油道孔的搭结处,除去油孔孔口毛刺,一般来讲,单根凸轮轴的清洁度为10毫克左右,若清洁度超标,将加速发动机零件的磨损,缩短发动机的寿命,清洗后的凸轮轴,还要吹干,涂上防锈油,并且做好防尘工作,存放在零件库内。
相关热词搜索: 凸轮轴 噪声 实验