当前位置: 首页 > 范文大全 > 公文范文 >

吴洋一经济学08071002422011年本科计量经济学实验课程期末上机考试实验报告

时间:2021-10-21 10:20:03 来源:网友投稿

  . . . .

 . . ..

 实 验(实训)报 告

 项 目 名 称 建立影响能源消费需求总量的因素模型

 所属课程名称 计量经济学实验

 项 目 类 型 多重共线性模型的检验与处理

 实验(实训)日期 2011

 班 级 08经济(2)

 学 号 0807100242

 姓 名 吴洋一

 指导教师 项后军

 财经学院教务处制

 一、实验(实训)概述:

 【目的及要求】

 (1)建立对数线性多元回归模型

 (2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?

 (3)如果有多重共线性,你准备怎样解决这个问题?试写出整个分析和解决过程。

 【基本原理】

  Klein判别法,逐步回归法,OLS

 【实施环境】(使用的材料、设备、软件)

 1、电脑1人一台。2、Eviews3.1学生版

 二、实验(实训)容:

 【项目容】

 建立并检验影响影响能源消费需求总量的因素模型

 【方案设计】

 理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。为此,收集了中国能源消费总量Y (万吨标准煤)、国生产总值(亿元)X1(代表经济发展水平)、国民总收入(亿元)X2(代表收入水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费 (千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2002年期间的统计数据,具体如下:

 年份

 能源消费

 国民

 总收入

 GDP

 工业

 建筑业

 交通运输邮电

 人均生活

 电力消费

 能源加工

 转换效率

 y

 X1

 X2

 X3

 X4

 X5

 X6

 X7

 1985

 76682

 8989.1

 8964.4

 3448.7

 417.9

 406.9

 21.3

 68.29

 1986

 80850

 10201.4

 10202.2

 3967.0

 525.7

 475.6

 23.2

 68.32

 1987

 86632

 11954.5

 11962.5

 4585.8

 665.8

 544.9

 26.4

 67.48

 1988

 92997

 14922.3

 14928.3

 5777.2

 810.0

 661.0

 31.2

 66.54

 1989

 96934

 16917.8

 16909.2

 6484.0

 794.0

 786.0

 35.3

 66.51

 1990

 98703

 18598.4

 18547.9

 6858.0

 859.4

 1147.5

 42.4

 67.2

 1991

 103783

 21662.5

 21617.8

 8087.1

 1015.1

 1409.7

 46.9

 65.9

 1992

 109170

 26651.9

 26638.1

 10284.5

 1415.0

 1681.8

 54.6

 66

 1993

 115993

 34560.5

 34634.4

 14143.8

 2284.7

 2123.2

 61.2

 67.32

 1994

 122737

 46670.0

 46759.4

 19359.6

 3012.6

 2685.9

 72.7

 65.2

 1995

 131176

 57494.9

 58478.1

 24718.3

 3819.6

 3054.7

 83.5

 71.05

 1996

 138948

 66850.5

 67884.6

 29082.6

 4530.5

 3494.0

 93.1

 71.5

 1997

 137798

 73142.7

 74462.6

 32412.1

 4810.6

 3797.2

 101.8

 69.23

 1998

 132214

 76967.2

 78345.2

 33387.9

 5231.4

 4121.3

 106.6

 69.44

 1999

 130119

 80579.4

 82067.5

 35087.2

 5470.6

 4460.3

 118.1

 70.45

 2000

 130297

 88254.0

 89468.1

 39047.3

 5888.0

 5408.6

 132.4

 70.96

 2001

 134914

 95727.9

 97314.8

 42374.6

 6375.4

 5968.3

 144.6

 70.41

 2002

 148222

 103935.3

 105172.3

 45975.2

 7005.0

 6420.3

 156.3

 69.78

 资料来源:《中国统计年鉴》2004、2000年版,中国统计。

 【实验(实训)过程】(步骤、记录、数据、程序等)

 一、建立对数线性多元回归模型

 利用Eviews软件,输入Y、X1、X2、X3、X4、X5、X6、X7等数据,采用这些数据对模型进行OLS回归,结果如表1.1:

  表1.1

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:20

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 -80155.52

 108510.7

 -0.738688

 0.4771

 X1

 36.84232

 11.64146

 3.164750

 0.0101

 X2

 -28.23350

 11.33756

 -2.490262

 0.0320

 X3

 -10.32637

 4.845876

 -2.130961

 0.0589

 X4

 -17.52643

 17.94658

 -0.976589

 0.3518

 X5

 -34.49995

 18.88123

 -1.827209

 0.0976

 X6

 336.4866

 992.1418

 0.339152

 0.7415

 X7

 1952.573

 1535.832

 1.271345

 0.2324

 R-squared

 0.964563

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.939758

  S.D. dependent var

 22162.37

 S.E. of regression

 5439.605

  Akaike info criterion

 20.34190

 Sum squared resid

 2.96E+08

  Schwarz criterion

 20.73762

 Log likelihood

 -175.0771

  F-statistic

 38.88476

 Durbin-Watson stat

 1.842204

  Prob(F-statistic)

 0.000002

 Estimation Command:

 =====================

 LS Y C X1 X2 X3 X4 X5 X6 X7

 Estimation Equation:

 =====================

 Y = C(1) + C(2)*X1 + C(3)*X2 + C(4)*X3 + C(5)*X4 + C(6)*X5 + C(7)*X6 + C(8)*X7

 Substituted Coefficients:

 =====================

 Y = -80155.51982 + 36X1 - 28X2 - 10X3 - 17.526428*X4 - 34X5 + 336.4865768*X6 + 1952.572512*X7

 二、如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?

 由表1.1可见,该模型R2=0.964563,可决系数很高,F检验值38.88476,明显显著。但是当 时 , 2.228,不仅X1、X2、X3、X4、X5、X6、X7的t检验不显著,而且X2、X3、X4、X5系数的符号与预期的相反,这表明很可能存在严重的多重共线性。

 计算各解释变量的相关系数,选择X1、X2、X3、X4、X5、X6、X7数据,点”view/correlations”得相关系数矩阵(如表1.2):

 表1.2

 由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。

 三、消除多重共线性

 采用逐步回归的办法,去检验和解决多重共线性问题。分别作Y对X1、X2、X3、X4、X5、X6、X7的一元回归,

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:46

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 85243.95

 3524.481

 24.18624

 0.0000

 X1

 0.624974

 0.061545

 10.15481

 0.0000

 R-squared

  0.865682

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.857287

  S.D. dependent var

 22162.37

 S.E. of regression

 8372.365

  Akaike info criterion

 21.00770

 Sum squared resid

 1.12E+09

  Schwarz criterion

 21.10663

 Log likelihood

 -187.0693

  F-statistic

 103.1201

 Durbin-Watson stat

 0.253364

  Prob(F-statistic)

 0.000000

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:46

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 85469.49

 3523.767

 24.25515

 0.0000

 X2

 0.612846

 0.060668

 10.10163

 0.0000

 R-squared

 0.864456

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.855985

  S.D. dependent var

 22162.37

 S.E. of regression

 8410.478

  Akaike info criterion

 21.01678

 Sum squared resid

 1.13E+09

  Schwarz criterion

 21.11571

 Log likelihood

 -187.1511

  F-statistic

 102.0429

 Durbin-Watson stat

 0.254758

  Prob(F-statistic)

 0.000000

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:47

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 87111.43

 3531.741

 24.66529

 0.0000

 X3

 1.370007

 0.141557

 9.678113

 0.0000

 R-squared

 0.854102

  Mean dependent var

 Adjusted R-squared

 0.844984

  S.D. dependent var

 S.E. of regression

 8725.793

  Akaike info criterion

 Sum squared resid

 1.22E+09

  Schwarz criterion

 Log likelihood

 -187.8135

  F-statistic

 Durbin-Watson stat

 0.238854

  Prob(F-statistic)

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:48

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 88024.82

 3384.305

 26.00972

 0.0000

 X4

 8.805949

 0.890155

 9.892599

 0.0000

 R-squared

 0.859481

  Mean dependent var

 Adjusted R-squared

 0.850698

  S.D. dependent var

 S.E. of regression

 8563.442

  Akaike info criterion

 Sum squared resid

 1.17E+09

  Schwarz criterion

 Log likelihood

 -187.4755

  F-statistic

 Durbin-Watson stat

 0.244443

  Prob(F-statistic)

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:48

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 87474.56

 3855.295

 22.68946

 0.0000

 X5

 10.14708

 1.160865

 8.740963

 0.0000

 R-squared

 0.826848

  Mean dependent var

 Adjusted R-squared

 0.816026

  S.D. dependent var

 S.E. of regression

 9505.923

  Akaike info criterion

 Sum squared resid

 1.45E+09

  Schwarz criterion

 Log likelihood

 -189.3549

  F-statistic

 Durbin-Watson stat

 0.291497

  Prob(F-statistic)

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:49

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 79984.11

 4307.686

 18.56777

 0.0000

 X6

 464.9711

 49.90741

 9.316675

 0.0000

 R-squared

 0.844359

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.834631

  S.D. dependent var

 22162.37

 S.E. of regression

 9012.457

  Akaike info criterion

 21.15504

 Sum squared resid

 1.30E+09

  Schwarz criterion

 21.25397

 Log likelihood

 -188.3954

  F-statistic

 86.80043

 Durbin-Watson stat

 0.270852

  Prob(F-statistic)

 0.000000

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 10:49

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 -342804.1

 151437.7

 -2.263664

 0.0378

 X7

 6689.491

 2212.428

 3.023597

 0.0081

 R-squared

 0.363618

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.323844

  S.D. dependent var

 22162.37

 S.E. of regression

 18223.83

  Akaike info criterion

 22.56329

 Sum squared resid

 5.31E+09

  Schwarz criterion

 22.66222

 Log likelihood

 -201.0696

  F-statistic

 9.142136

 Durbin-Watson stat

 0.500653

  Prob(F-statistic)

 0.008072

 结果如表1.3所示:

 表1.3

 变量

 X1

 X2

 X3

 X4

 X5

 X6

 X7

 参数估计值

 0.624974

 0.612846

 1.370007

 8.805949

 10.14708

 464.9711

 6689.491

 t统计量

 10.15481

 10.10163

 9.678113

 9.892599

 8.740963

 9.316675

 3.023597

 0.865682

 0.864456

 0.854102

 0.859481

 0.826848

 0.844359

 0.363618

 按的大小排序为:X1、X2、X4、X3、X6、X5、X7。

 以X1为基础,顺次加入其他变量逐步回归。首先加入X2回归结果为:

 Dependent Variable: Y

 Method: Least Squares

 Date: 06/14/11 Time: 11:06

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 82091.42

 4623.981

 17.75341

 0.0000

 X1

 10.28141

 9.207935

 1.116582

 0.2817

 X2

 -9.475974

 9.035652

 -1.048732

 0.3109

 R-squared

 0.874858

  Mean dependent var

 Adjusted R-squared

 0.858172

  S.D. dependent var

 S.E. of regression

 8346.365

  Akaike info criterion

 Sum squared resid

 1.04E+09

  Schwarz criterion

 Log likelihood

 -186.4325

  F-statistic

 Durbin-Watson stat

 0.309126

  Prob(F-statistic)

 Y = 82091.42296 + 10X1 - 9.475973692*X2

  t=(1.116582) (-1.048732) R2=0.874858

 当取时,,X2参数的t检验不显著,故剔除X2,

 再加入X3回归得

 Dependent Variable: Y

 Method: Least Squares

 Date: 01/03/10 Time: 13:44

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 69047.09

 5858.239

 11.78632

 0.0000

 X1

 6.684434

 1.921197

 3.479306

 0.0034

 X3

 -13.37710

 4.239913

 -3.155040

 0.0065

 R-squared

 0.919261

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.908496

  S.D. dependent var

 22162.37

 S.E. of regression

 6704.025

  Akaike info criterion

 20.60982

 Sum squared resid

 6.74E+08

  Schwarz criterion

 20.75821

 Log likelihood

 -182.4883

  F-statistic

 85.39239

 Durbin-Watson stat

 0.826375

  Prob(F-statistic)

 0.000000

 Y = 69047.08508 + 6.684434324*X1 - 13X3

  t=(3.479306) (-3.155040) R2=0.919261

 当取 时,,X3参数通过t检验,

 再加入X4回归得

 Dependent Variable: Y

 Method: Least Squares

 Date: 01/03/10 Time: 13:48

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 70482.84

 6619.407

 10.64791

 0.0000

 X1

 6.493408

 2.004407

 3.239566

 0.0059

 X3

 -14.25390

 4.667455

 -3.053892

 0.0086

 X4

 8.327015

 16.12832

 0.516298

 0.6137

 R-squared

 0.920770

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.903792

  S.D. dependent var

 22162.37

 S.E. of regression

 6874.191

  Akaike info criterion

 20.70207

 Sum squared resid

 6.62E+08

  Schwarz criterion

 20.89993

 Log likelihood

 -182.3186

  F-statistic

 54.23356

 Durbin-Watson stat

 0.920113

  Prob(F-statistic)

 0.000000

 Y = 70482.84388 + 6X1 - 14X3 + 8.327015085*X4

 t=(3.239566) (-3.053892) (0.516298) R2=0.920770

 当取 时, ,X4参数的t检验不显著,故剔除X4,

 再加入X5回归得

 Dependent Variable: Y

 Method: Least Squares

 Date: 01/03/10 Time: 13:53

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 65480.88

 5394.770

 12.13785

 0.0000

 X1

 8.163830

 1.812581

 4.503980

 0.0005

 X3

 -14.90018

 3.797770

 -3.923403

 0.0015

 X5

 -13.22339

 5.753094

 -2.298483

 0.0375

 R-squared

 0.941382

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.928821

  S.D. dependent var

 22162.37

 S.E. of regression

 5912.807

  Akaike info criterion

 20.40076

 Sum squared resid

 4.89E+08

  Schwarz criterion

 20.59862

 Log likelihood

 -179.6068

  F-statistic

 74.94427

 Durbin-Watson stat

 1.171072

  Prob(F-statistic)

 0.000000

 Y = 65480.88431 + 8.163829785*X1 - 14X3 - 13X5

 t=(4.503980) (-3.923403) (-2.298483) R2=0.941382

 当取 时, ,X5参数通过t检验,

 再加入X6回归得

 Dependent Variable: Y

 Method: Least Squares

 Date: 01/03/10 Time: 13:57

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 64354.22

 12094.41

 5.320991

 0.0001

 X1

 8.030362

 2.269021

 3.539131

 0.0036

 X3

 -14.66223

 4.543937

 -3.226767

 0.0066

 X5

 -14.90441

 17.07428

 -0.872916

 0.3985

 X6

 95.57242

 909.5162

 0.105081

 0.9179

 R-squared

 0.941431

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.923410

  S.D. dependent var

 22162.37

 S.E. of regression

 6133.405

  Akaike info criterion

 20.51102

 Sum squared resid

 4.89E+08

  Schwarz criterion

 20.75835

 Log likelihood

 -179.5992

  F-statistic

 52.24043

 Durbin-Watson stat

 1.150509

  Prob(F-statistic)

 0.000000

 Y = 64354.22244 + 8.030361821*X1 - 14X3 - 14X5 + 95X6

 t=(3.539131) (-3.226767) (-0.872916) (0.105081) R2=0.941431

 当取 时,,X6参数的t检验不显著,予以剔除,

 再加入X7回归得

 Dependent Variable: Y

 Method: Least Squares

 Date: 01/03/10 Time: 14:03

 Sample: 1985 2002

 Included observations: 18

 Variable

 Coefficient

 Std. Error

 t-Statistic

 Prob.

 C

 89268.75

 95105.65

 0.938627

 0.3650

 X1

 7.922042

 2.110078

 3.754384

 0.0024

 X3

 -14.25917

 4.690771

 -3.039834

 0.0095

 X5

 -13.78204

 6.359577

 -2.167131

 0.0494

 X7

 -347.9448

 1388.709

 -0.250553

 0.8061

 R-squared

 0.941663

  Mean dependent var

 114898.3

 Adjusted R-squared

 0.923714

  S.D. dependent var

 22162.37

 S.E. of regression

 6121.248

  Akaike info criterion

 20.50705

 Sum squared resid

 4.87E+08

  Schwarz criterion

 20.75438

 Log likelihood

 -179.5635

  F-statistic

 52.46107

 Durbin-Watson stat

 1.176599

  Prob(F-statistic)

 0.000000

 Y = 89268.74629 + 7.922042434*X1 - 14X3 - 13X5 - 347.9448125*X7

 t=(3.754384) (-3.039834) (-2.167131) (-0.250553) R2=0.941663

 当取 时,,X7参数的t检验不显著,予以剔除。

 所以,最后消除多重共线性的结果是:

 Y = 65480.88431 + 8.163829785*X1 - 14X3 - 13X5

 t=(4.503980) (-3.923403) (-2.298483) R2=0.941382

 =0.928821 F=

 这说明,在其他因素不变的情况下,当国民总收入X1增长1亿元时,能源消费Y将增长8.16万吨标准煤;在其他因素不变的情况下,当工业增加值X3增长1亿元时,能源消费Y将减少14.9万吨标准煤;在其他因素不变的情况下,当交通运输邮电增加值X5增加1单位时,能源消费Y减少13.22万吨标准煤。

 三、指导教师评语及成绩:

 评语:

 成绩: 指导教师签名:

  批阅日期:

相关热词搜索: 经济学 实验 上机 计量 期末